/******************************************************************** ** Image Component Library (ICL) ** ** ** ** Copyright (C) 2006-2010 CITEC, University of Bielefeld ** ** Neuroinformatics Group ** ** Website: www.iclcv.org and ** ** http://opensource.cit-ec.de/projects/icl ** ** ** ** File : ICLGeom/examples/intrinsic-camera-calibration-tools.h ** ** Module : ICLGeom ** ** Authors: Christof Elbrechter ** ** ** ** ** ** Commercial License ** ** ICL can be used commercially, please refer to our website ** ** www.iclcv.org for more details. ** ** ** ** GNU General Public License Usage ** ** Alternatively, this file may be used under the terms of the ** ** GNU General Public License version 3.0 as published by the ** ** Free Software Foundation and appearing in the file LICENSE.GPL ** ** included in the packaging of this file. Please review the ** ** following information to ensure the GNU General Public License ** ** version 3.0 requirements will be met: ** ** http://www.gnu.org/copyleft/gpl.html. ** ** ** ** The development of this software was supported by the ** ** Excellence Cluster EXC 277 Cognitive Interaction Technology. ** ** The Excellence Cluster EXC 277 is a grant of the Deutsche ** ** Forschungsgemeinschaft (DFG) in the context of the German ** ** Excellence Initiative. ** ** ** *********************************************************************/ #ifndef INTRINSIC_CAMERA_CALIBRATION_TOOLS_H #define INTRINSIC_CAMERA_CALIBRATION_TOOLS_H #include <ICLCore/Img.h> #include <ICLUtils/Point32f.h> #include <ICLUtils/FixedVector.h> namespace icl{ typedef FixedColVector<double,2> P64f; typedef FixedMatrix<double,2,2> M64f; struct CalibrationStep{ Img32f colorImage; Img32f image; std::vector<Point32f> points; Point32f &operator[](int idx) { return points[idx]; } const Point32f &operator[](int idx) const { return points[idx]; } void showSelf() const{ std::cout << "Calibration Step npoints: " << points.size() << "image: " << image << std::endl; } }; struct CalibrationData{ std::vector<CalibrationStep> data; int nx,ny; int nloops() const { return (int) data.size(); } int dim() const { return nx*ny; } const CalibrationStep &operator[](int idx) const { return data[idx]; } CalibrationStep &operator[](int idx){ return data[idx]; } void showSelf() const{ std::cout << "Calibration Data " << data.size() << " slices nx:" << nx << " ny:" << ny << std::endl; for(unsigned int i=0;i<data.size();++i){ data[i].showSelf(); } } }; double get_fitting_error(const CalibrationData &data, double dist_factor[4]); double check_error(const std::vector<double> &x, const std::vector<double> &y, int num, double dist_factor[4]); double calc_distortion2(const CalibrationData &data, double dist_factor[4]); double get_size_factor(double dist_factor[4], int xsize, int ysize); void calc_distortion(const CalibrationData &data,int xsize, int ysize, double dist_factor[4]); void calc_distortion_stochastic_search(const CalibrationData &data, int xsize, int ysize, double dist_factor[4]); void apply_pca(const std::vector<P64f> &input, M64f &evec, P64f &eval, P64f &mean); } #endif