
Reaching Benchmark Framework V.1.0

Documentation

Andre Lemme, Yaron Meirovitch, Mohammad Khansari

September 10, 2013

Contents

1 Benchmark concepts 2
1.1 Introduction . 2
1.2 Dataset of handwriting motions 3
1.3 Benchmark Conditions . 3

1.3.1 Discrete Push . 4
1.3.2 Generalization . 4
1.3.3 Continuous Push . 5
1.3.4 Moving Targets . 5

1.4 Evaluation . 5
1.4.1 Trajectory evaluation based on motor control research . . 6
1.4.2 Standardized Scores and Ranking 7
1.4.3 Measures on the Kinematic level 7
1.4.4 Measures on the Geometric level 8
1.4.5 Measures using Geometric and Kinematic 8
1.4.6 Properties of the implemented model 10

2 Technical manual 11
2.1 First steps in using the Benchmark framework 11
2.2 Interface class . 11

2.2.1 Properties . 12
2.2.2 Functions . 12

2.3 GUI . 12
2.3.1 How to start the Benchmark 12
2.3.2 General layout . 13
2.3.3 Setting parameters . 15

2.4 FAQ . 15

1

Chapter 1

Benchmark concepts

1.1 Introduction

Manual programming of robot motions often requires a large amount of en-
gineering knowledge about both the task and the robot and it can become
particularly non-intuitive when dealing with high Degrees of Freedom (DoF)
humanoids. The advent of a new generation of humanoid robots that need to
perform a wide variety of tasks in human daily lives stresses further more the
importance of techniques to autonomously adapt to various situations and to
be robust to various sources of perturbations/uncertainties. It is furthermore
essential for social acceptance of humanoids to provide motion patterns that
are more similar to human movements. In response to these concerns, many
approaches have been introduced within the passed decade following different
levels of modeling, from kinematic of the motion, biomechanic of the limb, plan-
ning and execution level, to neural modeling of cortical process.

This benchmark framework was developed to compare the state-of-the-art
learning algorithms that cover model of the kinematic of human reaching mo-
tions. It is timely as an increasing variety of different approaches in generating
human-like robot motions in the field calls for standardized and systematic
comparisons. This benchmark provides the opportunity to understand and to
compare methods through an open-source software framework that has been
developed in the European project AMARSi (http://www.amarsi-project.eu/).
This benchmark evaluates algorithms on a library of human motions based on
various criteria such as ”level of similarity to human motions”, ”accuracy in
reaching the goal state”, ”adaptability to changes dynamic environments”, ”ro-
bustness to perturbations”, etc.

The AMARSi Benchmark framework is a software package written in MAT-
LAB that evaluates the performance of reaching motion generation methods
against 11 different metrics. In this chapter we present the benchmarking frame-
work and the methodology for systematically test and evaluate of the different
models of motion generation.

2

Figure 1.1: The library of LASA handwriting motions [13]. This library is
composed of 30 two-dimensional point-to-point motions.

1.2 Dataset of handwriting motions

The demonstrations data for the handwriting motions were collected from pen
input using a Tablet-PC. For each motion, the user was asked to draw 7 demon-
strations of a desired pattern, by starting from different initial positions (but
fairly close to each other) and ending to the same final point. These demonstra-
tions may intersect each other. In total a library of 26 human handwriting mo-
tions were collected, in addition four motions were generated that more than one
pattern is included (called Multi Models). Without loss of generality, the target
(final) point is by definition set at (0, 0) for all motions (shapes) in this library.
This library was developed by LASA laboratory (http://lasa.epfl.ch/) and
used in [14, 12, 13] as an evaluation benchmark to compare the performance of
different regression techniques. All demonstrations of the different shapes are
presented in Figure 1.1.

1.3 Benchmark Conditions

Four different benchmark conditions were designed, each condition test specific
aspects of the trajectory generation methods. We describe each benchmark
condition and their associated parameters and metrics that are used to quantify
the performance of each method. In each benchmark, 150 samples for every
parameter are drawn from specific probability distributions which will be given

3

in the following.

1.3.1 Discrete Push

In this benchmark condition, discrete perturbations are applied during motion
generation. It emulates a hit against the end effector at a discrete time. A
hit is a displacement of the end in one time step and evaluates the robustness
of the movement generation method. These perturbations appear with varying
timing, direction and amplitude. The target point remains fixed.

For each shape, we perform systematic tests for each combination of values
of the parameters below:

Normalized start time: The normalized time at which the trajectory is per-
turbed1. The samples for start time are drawn from the following proba-
bility distribution function:

P(x) =

{
1 for 0 ≤ x ≤ 1

0 for x < 0 or x > 1
(1.1)

Amplitude: The amplitude of the perturbation (in millimeters). Let us define
l = 50mm, corresponding to the length span of motion along both x and
y axes. Then, we draw samples for amplitude from a normal PDF:

P(x) =
1

σ
√

2π
e−

(x−µ)2

2σ2 (1.2)

where µ = 0.1l and σ = 0.05l.

Vector: The direction of the perturbation (no unit). This vector is normalized
and multiplied by the amplitude to get the actual perturbation. Vector
is a two-dimensional variable and each of the two components are drawn
from a uniform PDF.

P(x) =

{
0.5 for − 1 ≤ x ≤ 1

0 for x < −1 or x > 1
(1.3)

1.3.2 Generalization

The generalization benchmark condition is a special variant of the discrete push
benchmark condition. The difference is that the ”start time” parameter is set
to zero and remains fixed. The perturbation will now occurs at the beginning
of the movement which results in a displacement of the starting position and
shows the ability to start the movement from different initial conditions. For
generalization benchmark condition, the parameters value are set as follows:

Amplitude: The amplitude of the perturbation (in millimeters). The samples
for amplitude are drawn from a uniform PDF (see Eq. 1.2) with mean
µ = 0.2l and standard deviation σ = 0.1l.

1Note that the normalized start time will be multiplied by the average duration of each
motion to determine the actual start time of perturbations.

4

Vector: The direction of the perturbation (no unit), which is drawn from the
pdf given in Eq. 1.3.

1.3.3 Continuous Push

In this benchmark condition, the movement generation is continuously per-
turbed during a specific amount of time. This emulates e.g. a teaching scenario
in which a human tutor is correcting the movement for a time duration. As pre-
viously, perturbations appear at varying times, direction and amplitude. The
target point remains fixed.

For each shape, systematic tests are performed for each combination of values
of the parameters below:

Start time and vector are chosen as described in the Discrete Push Bench-
mark condition.

Amplitude: The amplitude of the perturbation (in millimeters/second). The
samples for amplitude are drawn from a uniform PDF (see Eq. 1.2 with
v̄ = 20.7315, mean µ = 0.5v̄ and standard deviation σ = 0.25v̄. The
parameter v̄ corresponds to the mean speed of all demonstrations across
all the 30 motions in the library.

Duration: The duration of the perturbation (in seconds) is drawn from the
following PDF:

P(x) =

{
5 for 0.1 ≤ x ≤ 0.3

0 for x < 0.1 or x > 0.3
(1.4)

1.3.4 Moving Targets

This benchmark condition quantifies the ability of the trajectory generators to
track and reach moving targets. The target movement starts at different times
and lasts over a certain duration. Also the amplitude and direction of the target
movement can be changed.

The parameters are the same as in the Continuous Perturbation Benchmark
only applied to the target point. Therefore, the probability distributions are
the same as well.

1.4 Evaluation

In the benchmark evaluation, principles from motor control research are imple-
mented in order to assess the behavioral plausibility of movements and, specif-
ically, to evaluate the maintenance and distortion/violations of these human
movement regularities in the movement reproductions.

5

1.4.1 Trajectory evaluation based on motor control re-
search

Observations have been showing that various human movements are stereotyp-
ical [16, 3, 1, 6, 10, 9, 17, 4, 7]. One key observation is that point to point
movements tend to be straight and their speed profiles bell-shaped. Such reg-
ularities appear in reaching movements with invariance to the direction and
the end-points of the articulated trajectories. A theoretical account for this in-
variance was suggested by the minimum jerk model [10, 8] which predicts that
hand trajectories are optimally smooth (see eqn. 1.9). The predictions of this
model were successfully tested also for tasks involving via points [8] and curved
movements (the constrained minimum jerk model [21]).

Another regularity is that hand movements tend to slow down when the
shape of the trajectory becomes curved. This tendency was quantified by the
two-thirds power law [15], which predicts that the hand’s speed is proportional
to the curvature of the path of the movement raised to the power of minus one
third (see eqn. 1.10). Numerous studies have analyzed the persistency of this
rule, mainly in drawing movements [22] but also for other modalities such as
eye pursuits [23].

One of the most prominent features of human movement is encoded in its
kinematics. Hence, we paid special attention to measuring the compliance of
the reproduced kinematics with the demonstrated one by quantifying how much
of the variance in the demonstrated kinematics is explained by the reproduced
kinematics. Therefore we calculate the coefficient of determination (R2) for ex-
plaining the demonstrated kinematics based on the reproduced kinematics. The
scores of this metric are calculated from the standardized trajectories according
to the formula,

R2 = 1−
∑
i (vdemo(i)− vrepro(i))2∑
i (vdemo(i)− v̄demo)

, (1.5)

where v is the standardized speed profile, which has been frequently used for
the modeling of human movement (e.g. [20, 18, 2]). The R2 metric compares
the predictions of the model against those of the simple model of constant speed
movement, where a value of 1 indicates perfect agreement and a value smaller
than 0 means that the constant speed model is better than the reproductions
at explaining the data of the demonstrations. In the evaluation process the
R2 metric is not only used for the speed profiles, but also e.g. scoring the
reproduced movement path.

All trajectories are temporally scaled by a parameter τ (dτ ∝ dt) in or-
der to have standardized durations. This allows to inspect motion kinematics
independently of the total movement duration.

The geometric and kinematic accuracies of the simulated reproductions were
separately inspected. To obtain only the shape relevant geometrical information,
called ”path”, all trajectories are parametrized according to their Euclidean arc
length parameter s such that for a trajectory r,

∣∣dr
ds

∣∣ = 1. The compliance of
the simulated path with that of the demonstration is measured by their RMSE
measure (root of the mean squared error, eqn. 1.7 below).

6

1.4.2 Standardized Scores and Ranking

In the benchmark, normalized scores are chosen that can be used for comparing
both among benchmarked methods and across shapes in each method. Scores
are standardized to reduce the sensitivity of the scoring system to noise and
digitization. All scores whose optimal values may potentially be attained by
a good reproduction are thresholded near that value. For example, all reach-
ing positions that were smaller than 1 mm far from the target positions were
counted as optimal. However doing so for the mean squared jerk is artificial
and meaningless since an optimal attainable jerk thresholds is unknown and
only parabolas attain the optimal value of zero mean squared jerk [19]. When
applied, the thresholds are given below for each measurement.

1.4.3 Measures on the Kinematic level

The following measures are specialized to evaluate the performance on the ve-
locity or the speed profiles.

Velocity Accuracy

The reproduced and demonstrated velocity vector profiles are compared using
the RMSE measure above (see 1.4.4) with the standardized trajectory parameter
τ (see sec. 1.4.5).
Scope: global.
Variable: kinematic.

Speed Accuracy

the speed profiles of the demonstrated and reproduced trajectories are compared
using the R2 measure as in eqn. 1.5. As in sec. 1.4.5, calculations are carried
out based on the standardized trajectory parameter τ .
Scope: global.
Variable: kinematic.
Optimality threshold: R2

speed−accuracy ≥ 0.8 of explained variance.

Target Velocity Error

This is a task relevant measure, because for reaching task stopping at the target
is necessary for save human robot interaction. Therefor we check if the last
velocity sent by the model is close to zero taking the L2-norm of this vector.
Scope: local.
Variable: kinematic.

Movement Duration

The trajectories are not reparameterized and the duration of the reproduction
and the corresponding demonstration is compared. Let us denote the demon-
stration and its reproduction final time by tfd and tfr . Then the movement
duration error is computed according to:

εmovement−duration(tfd , t
f
r) = |1.0− tfr

tfd
| (1.6)

7

Scope: global.
Variable: kinematic.
Optimality threshold: εmovement−duration(tfd , t

f
r) ≤ 0.1.

1.4.4 Measures on the Geometric level

The reproduced and demonstrated trajectories are first reparamterized to have
only geometric information regarding the shape of the movement and will be
called ”path” in the following. To obtain their paths, all trajectories are parametrized
according to their Euclidean arc length parameter s such that for a trajectory
r,
∣∣dr
ds

∣∣ = 1.

Path Accuracy

The reproduced and demonstrated paths, rre(s). rdemo(s), are compared by
measuring their RMSE,

RMSEpath−accuracy(rde, rre) =

√
1

T

∫ T

0

|rde(s)− rre(s)|2 ds (1.7)

Scope: global.
Variable: geometrical.

Target Position Error

Primary scope: local.
Variable: geometrical
Optimality threshold: Errreachingtargeterror ≥ 1 mm.

1.4.5 Measures using Geometric and Kinematic

In the evaluation we only have one measurement that evaluates the geometrical
and also the kinematic information of the reproduction versus the demonstration
which are normalized only in movement duration.

Trajectory Accuracy

The trajectories normalized in movement duration, rre(τ), rdemo(τ), are com-
pared using the following R2 measure,

R2
trajectory−accuracy(rde, rre) = 1−

∫ T

0
|rde(τ)− rre(τ)|2dτ∫ T

0
|rde(τ)− E[rde]|2dτ

(1.8)

Scope: global.
Variable: geometrical and kinematic.
Optimality threshold: R2

trajectory−accuracy ≥ 0.95.

8

Minimum Jerk Trajectories

The minimum jerk model predicts that human trajectories minimize the follow-
ing functional,

I(r) =

∫ T

0

∣∣∣∣ d3dt3 r
∣∣∣∣2 dt (1.9)

subject to boundary conditions

where r(t) is any end-effector’s trajectory. We therefore used the root of the
Mean Squared Derivative (MSD) measure of a trajectory r(t),

RMSDn(r) =

√
1

T

∫ T

0

∣∣∣∣ dndtn r
∣∣∣∣2 dt,

where for the mean squared jerk n = 3.
Scope: global.
Variable: spatiotemporal.

The 2/3 power law

The 2/3 power law predicts the speed profile of a trajectory, ds
dt , based on its

curvature κ(t),

ds

dt
= ακ(t)β , (1.10)

where α and β are segment-wise constants. The parameter β is usually close to
a value of − 1

3 , mostly for drawing movements, and α is a velocity gain factor
(see [5] for the use of this law for complex 3D tasks).

The question of movement control and specifically segmentation is not ad-
dressed in this benchmark. However since the compliance with such power laws
is evaluated only over segments of movements, we exhaustively evaluated vari-
ous segment sizes in the reproductions against those of the demonstrations. To
avoid explicit segmentation, sliding windows are used for each demonstration,
evaluating the following linear prediction [22],

log
ds

dt
= logα+ β log κ(t),

with the R2 metric.
Scope: segmental.
Variable: spatiotemporal.
Optimality threshold: ∆R2

power−law ≥ 0% (i.e. as good as demonstrations with
respect to compliance with the power law).

For each demonstration and window size, the R2 scores are averaged across
all sliding windows. The score profile of a demonstration is thus,

Sdemoi(Wn) = E[R2],

calculated over all sliding windows of length Wn, where Wn is the duration of
the n-samples windows. And then the worse (minimal) R2 is calculated for each
window size across all demonstrations,

S(Wn) = min
i
{Sdemoi(Wn)},

9

This score is a lower bound for the R2 values across all demonstrations, indi-
cating for what window sizes the power law is evident in all demonstrations.
The set of scores {S(Wn)} is referred to as the ”groundtruth” compliance of the
task’s demonstrations with the power law.

The same procedure is carried out to obtain the score of each reproduction,
Sreproi(Wn). The deviation of each reproduction from the groundtruth score
is calculated for each window size and then averaged over the sizes for which
the groundtruth competence is high (R2 > 0.5). For each reproduction, the
resulting score F (reproi) is relative,

F (reproi) = E
[
Sreproi(Wn)− S(Wn)

S(Wn)

]
,

calculated over all window durations Wn.

1.4.6 Properties of the implemented model

Besides the performance of the movement generation module to generate good
trajectories, we are also interested of the resource management, which can give
some insights to the complexity in the movement generation method.

Processing Time

Processing time provides an estimation of the computational complexity of the
motion generator algorithm. It corresponds to the amount of time (in millisec-
ond) for the algorithm to provides the next desired state based on the current
state of the motion.

Model Size

For a motion generator algorithm, matlab model ’.mat’ file size provides a rough
estimation of the number of parameters required to model a motion. For each
motion in the library, participant are required to provide a (trained) model as
a MATLAB binary file (i.e. ‘.mat’ format). We will use the size of this file in
bytes as an indication of the required number of parameters without going into
mathematical details. Thus, it is essential to only save essential parameters in
the ‘.mat’ file of each model.

10

Chapter 2

Technical manual

2.1 First steps in using the Benchmark frame-
work

This MATLAB benchmark framework was developed to compare different meth-
ods for generating reaching movements and extract their specificities, strengths
and weaknesses. It allows each user to configure different perturbations which
can occur during a movement execution and prepare their models for the given
task before a baseline parameter set is used to create comparable results.

To participate in the Benchmark, you do not need to provide us with your
learning algorithm. You only need to send a piece of code (i.e. integration in a
common interface class) that can be used at the execution level and also your
(trained) model of the motions. Your code at the execution level should provide
the next state given the current situation (i.e. current time, goal position, and
current position and velocity). In case if it is necessary, you could create a
content-obscured version of your code by using the MATLAB ”pcode” function.

In the following the class interface is introduced and it is described how
to prepare the functions which are needed for the specific movement genera-
tion algorithm. In section 2.3 the basic usage of the graphical user interface is
described.

2.2 Interface class

In preparation of using the benchmark a movement generation algorithm needs
to be wrapped in a common interface. The proposed interface is specified in a
MATLAB class definition. This class is only for using the movement represen-
tation of the users model and does not provide functionality for learning from
data. The idea is that the benchmark user has already MATLAB models which
are trained with a dataset used in the benchmark. If that is the case only three
steps are needed and the benchmark framework can be used immediately:

1. write a class definition, which inherits the interface class ’MovementGen-
erator’ (example can be seen Code 2.1)

2. initialize the new class with the learned model

11

3. store the wrapped model in the ’YOUR MODEL FOLDER’ (see sec.
2.4)

2.2.1 Properties

The default properties:

t this gives number of past time steps

dt used delta t. This is used for integrating the trajectory

dim dimensionality of the movement task (2D/3D)

learnedModel will hold the original movement representation

curr position is used for feedback of the current position of the End Effector

curr velocity is used for feedback of the current velocity of the End Effector

target position is used for feedback of the current position of the target end
point.

If additional properties are needed, one can add more in the inherited class.
However the feedback will only be provided in position, velocity and current
time step.

2.2.2 Functions

Only two functions need to be implemented by the user. The ’init’ function and
the ’step’ function.

The ”step” function is meant to produce velocity commands to the simula-
tion, where xd is the velocity vector. We suggest that additional functions which
are needed for the original learnedModel will be located into the lib folder of
the corresponding participant.

2.3 GUI

The concept of this benchmark graphical user interface (GUI) is to configure a
full set of parameters for the different benchmark conditions (described in Sec.
1.3) first and then press the ”start” button to start the benchmark process.
At the end of the evaluation the results are stored in a ’mat’ file located in
the corresponding result path which can also be specified in the GUI. In the
following the basic functions and settings are described.

2.3.1 How to start the Benchmark

After starting MATLAB go to the Benchmark root path and condition ’start-
Benchmark’. This script will close all figures you may have open and also will
clear the workspace. Additionally it includes all necessary folders in the pro-
gram path of MATLAB. When the script successfully finished the GUI is visible
on the screen as shown in Fig 2.1 without any plotted results. The appearance
might varying a little if a different operating system is used e.g. mac, windows,
or linux.

12

Code 2.1 Simple class definition example for a Movement Generator which can
be used in the benchmark framework
classdef DUMMY_mg < MovementGenerator

properties

%properties in superclass

end

methods

function p = DUMMY_mg() % constructor

p@MovementGenerator();

end

% This function is wrapping the learned model

function init(p,model,dim)

p.init@MovementGenerator(dim);

p.learnedModel = model;

end

% this function is called frequently in the benchmark

% (see Simulation.m). The output of this function is

% the desired velocity. The next state in the Simulation.m

% is computing by x_next = xd*dt + x_current

function xd = step(p)

%Your code

end

end

end

2.3.2 General layout

The main window is divided into three main planes (see Fig. 2.1). The first
in the top left allows to set general information like the path to the dataset
and also to the trained models. It also has a drop down selecting object (see
Fig. 2.1 green background) in which a benchmark condition can be selected.
When a benchmark condition is selected the corresponding parameter settings
are displayed in the second main plane on the top right (see Fig. 2.2). The
third plane below the first two is used to display results of the evaluation for
each iteration.

The results are structured as follows. In the first row two plots are displayed,
which show first the movement trajectories from the demonstration (blue) the re-
production (red) and matched version (green) of the reproduction. The matched
version is the result of using the Procrustes algorithm [11] which rotates and
scales the reproduction such that a minimum error between the demonstration
and reproduction exist. The second plot in that row shows the speed profile of
the demonstrations(blue) and reproductions(red).

The next plots display the results per iteration. One iteration represent one
set of parameters used for the benchmark conditions. The labels on the y-axis
describe the measure displayed in the plot:

computationTime see Sec. 1.4.6 (Processing Time)

13

Figure 2.1: Benchmark framework GUI after starting the evaluation.

14

Figure 2.2: Close up view to the parameter settings of one Benchmark condition.
For each parameter two samples are displayed.

modelSize see Sec. 1.4.6 (Model Size)

targetErrorPos see Sec. 1.4.4 (Target Position Error)

targetErrorVel see Sec. 1.4.5 (Target Velocity Error)

meanJerk see eq. 1.9 (Mean Jerk of the movement)

trajErrorPos see eq. 1.7 (Trajectory Position Error)

trajErrorVel see Sec. 1.4.5 (Velocity Accuracy)

PL R2 see eq. 1.10 (Power-Law)

R2 see eq. 1.5 applyed to the path.

R2 speed see eq. 1.5

normalizedFinalTime see Sec. 1.4.5 (Movement Duration)

2.3.3 Setting parameters

All parameters described in Sec. 1.3 can be specified. For each parameter a
discrete list of numbers are allowed following the MATLAB array convention
i.e. in the discrete benchmark the parameter perturbation direction which is a
vector can be specified like this: [1; 2], [1 0]... The value will be processed one
after the other. Additionally each benchmark condition can be excluded from
evaluation and marked for plotting.

Note: By checking the check box labeled ”Run Benchmark” you will not
start the benchmark process. All benchmark conditions with this check box
checked will be processed after pressing the ”Start” button in the main menu.

2.4 FAQ

Where should I save my wrapped movement generation files?

All modules should be saved in one folder located here:

15

BENCHMARK_ROOT filesep DATASET_PATH filesep YOUR_MODEL_FOLDER

each module should correspond to one of the shapes in the dataset.
An example: one shape dataset from the ”LASA Handwriting Dataset” is
located here:

BENCHMARK_ROOT filesep LASA_Handwriting_Dataset ...

filesep DataSet filesep ’Angle.mat’

The corresponding learned module (in the benchmark interface class structure)
should be located here:

BENCHMARK_ROOT filesep LASA_Handwriting_Dataset ...

filesep YOUR_MODEL_FOLDER filesep ’Angle.mat’

Each shape can be selected in the GUI in the main menu ”Name of the demon-
stration” or all together by choosing ’all’ in the section.

Where should I save my utility m-files that I need?

We suggest to locate such files into a library folder of you choice which can be
located here:

BENCHMARK_ROOT filesep YOUR_LIB_FOLDER

Your adapted interface class can also be located here:

BENCHMARK_ROOT filesep ’Class’

16

Bibliography

[1] W. Abend, E. Bizzi, and P. Morasso. Human arm trajectory formation.
Exp Brain Res, 105:331–348, 1982.

[2] D. Bennequin, R. Fuchs, A. Berthoz, and T. Flash. Movement timing
and invariance arise from several geometries. PLoS computational biology,
5(7):e1000426, 2009.

[3] N. Bernstein. The Co-ordination and Regulation of Movements. Pergamon
Press, Oxford, 1967.

[4] E. Bizzi, M.C. Tresch, P. Saltiel, and A. d Avella. New perspectives on
spinal motor systems. Nature Reviews Neuroscience, 1(2):101–108, 2000.

[5] Dominik Endres, Yaron Meirovitch, Tamar Flash, and Martin A Giese. Seg-
menting sign language into motor primitives with bayesian binning. Fron-
tiers in computational neuroscience, 7, 2013.

[6] T. Flash. Organizing principles underlying the formation of hand trajec-
tories. Doctoral dissertation, Massachusetts Institute of Technology, Cam-
bridge, MA, 1983.

[7] Tamar Flash and Binyamin Hochner. Motor primitives in vertebrates and
invertebrates. Current Opinion in Neurobiology, 15(6):660 – 666, 2005.
Motor sytems / Neurobiology of behaviour.

[8] Tamar Flash and N. Hogan. The coordination of arm movements - an ex-
perimentally confirmed mathematical-model. J Neurosci, 5(7):1688–1703,
1985.

[9] C. M. Harris and D. M. Wolpert. Signal-dependent noise determines motor
planning. Nature, 394:780–784, 1998.

[10] N. Hogan. An organizing principle for a class of voluntary movements.
Journal of Neuroscience, 4(11):2745, 1984.

[11] R Hurely, J and B Cattell, R. The procrustes program: producing direct
notation to test a hypothesised factor structure. Behav. Sci., 7:258–262,
1962.

[12] Seyed Mohammad Khansari-Zadeh and A. Billard. Imitation learning of
globally stable non-linear point-to-point robot motions using nonlinear pro-
gramming. In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems (IROS), pages 2676–2683, 2010.

17

[13] Seyed Mohammad Khansari-Zadeh and A. Billard. Learning stable non-
linear dynamical systems with Gaussian mixture models. IEEE Trans. on
Robotics, 27(5):943–957, 2011.

[14] Seyed Mohammad Khansari-Zadeh and Aude Billard. BM: An iterative
algorithm to learn stable non-linear dynamical systems with Gaussian mix-
ture models. In Proceeding of the International Conference on Robotics and
Automation (ICRA), pages 2381–2388, 2010.

[15] F Lacquaniti, C Terzuolo, and P Viviani. The law relating kinematic and
figural aspects of drawing movements. Acta Psychologica, 54:115–130, 1983.

[16] K. Lashley. The problem of serial order in psychology. Cerebral mechanisms
in behavior. New York: Wiley, 1951.

[17] Bizzi E Mussa-Ivaladi FA. Motor learning through the combination of
primitives. Philosophical Transactions of the Royal Society of London Se-
ries B-Biological Sciences, 355:1755–1759, 2000.

[18] Frank E Pollick, Uri Maoz, Amir A Handzel, Peter J Giblin, Guillermo
Sapiro, and Tamar Flash. Three-dimensional arm movements at constant
equi-affine speed. Cortex, 45(3):325–339, 2009.

[19] F. Polyakov, E. Stark, R. Drori, M. Abeles, and T. Flash. Parabolic move-
ment primitives and cortical states: merging optimality with geometric
invariance. Biological Cybernetics, 100(2):159–184, 2009.

[20] Dagmar Sternad and Stefan Schaal. Segmentation of endpoint trajec-
tories does not imply segmented control. Experimental Brain Research,
124(1):118–136, 1999.

[21] E. Todorov and M. I. Jordan. Smoothness maximization along a predefined
path accurately predicts the speed profiles of complex arm movements. J.
Neurophysiol, 80:696–714, 1998.

[22] P. Viviani and M. Cenzato. Segmentation and coupling in complex move-
ments. Journal Experimental Psychology Humam Perception and Perfor-
mence, 11(6):828–845, 1985.

[23] P. Viviani and C. deSperati. The relationsheep between curvature and
velocity in two dimensional smooth persuit eye movement. The Journal of
Neuroscience, 17:3932–3945, 1997.

18

